达灵顿晶体管的一个缺点是它的基极-发射极电压被加倍了。由于整个达灵顿结构的基极和发射极之间有两个结,因此等效的基极-发射极电压是各个晶体管的基极-发射极电压之和:
V
B
E
=
V
B
E
1
+
V
B
E
2
≈
2
V
B
E
1
{\displaystyle V_{BE}=V_{BE1}+V_{BE2}\approx 2V_{BE1}\!}
对于硅半导体晶体管,当其处于工作区或饱和状态,其基极-发射极电压VBEi大约为0.65伏特,因此它们组成的达灵顿晶体管结构总的基极-发射极电压大约就是1.3伏特。
达灵顿晶体管的另外一个缺点是其饱和电压更大。输出级晶体管不能饱和(也就是说其基极-集电极的结必须维持反向偏置),因为当第一级晶体管处于饱和状态时,它将在输出级晶体管的集电极和基极之间施加满幅负反馈。[4]由于输出级晶体管的集电极-发射极电压等于其自身基极-发射极电压和前一级晶体管的集电极-发射极电压之和,两个电压在正常工作状态时都具有正数值,因此它总是超过了基极-发射极电压(即总有
V
C
E
2
=
V
B
E
2
+
V
C
E
1
{\displaystyle \mathrm {V_{CE2}=V_{BE2}+V_{CE1}} }
,因此
V
C
2
>
V
B
2
{\displaystyle \mathrm {V_{C2}>V_{B2}} }
)。因此,达灵顿晶体管的饱和电压是一个基极-发射极电压(硅管的情况大约是0.65伏特),比晶体管本身的饱和电压(约0.1到0.2伏特之间)要大得多。假设都具有相等的集电极电流,这个缺点会表现为达灵顿晶体管的耗散功率比单一晶体管要大。此外,更高的集电极-发射极电压在晶体管-晶体管逻辑电路(Transistor-transistor logic, TTL)电路中可能会引起逻辑错误。
达灵顿结构导致的另一个问题是,其开关速度不得不降低,因为第一级晶体管不能够主动抑制第二级晶体管的基极电流,因此开关响应比单一的晶体管更慢。为了缓解这一缺点,第二级晶体管的基极和发射极之间常常会连接一个几百欧姆的电阻。[1]这个电阻在基极和发射极之间为积累在基极-发射极结上的电荷提供了一条阻抗较低的释放路径,由此使得达灵顿晶体管的开关速度更快。[5]
在高频率的情况里,达灵顿对将具有比单一晶体管更大的相位移动,因此它在负反馈的情况下会变得不稳定。
达灵顿晶体管常把两个分立的晶体管做成集成芯片的形式。在上图中,左边的晶体管Q1可以是低功率类型的,右边的Q2则需要高功率类型的。整个达灵顿结构的最大集电极电流IC(max)大约等于Q2的集电极电流。2N6282是一种典型的达灵顿结构集成芯片,内部包含了一个上文提到过的关断电阻,在IC等于10安培时具有2400的电流增益。
实际上,达灵顿结构可以对安全电压以下皮肤产生的接触电流进行足够敏感的响应,因此它常被用来构成触控开关的信号输入级。